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Monte Carlo (Importance) Sampling within a Benders'

Decomposition Algorithm for Stochastic Linear Programs

Gerd Infanger

Stanford University

Abstract

A method employing decomposition techniques and Monte
Carlo sampling (importance sampling) to solve stochastic
linear programs 1is described and applied to capacity
expansion planning problems of electric utilities. We
consider uncertain availability of generators and

transmission lines and uncertain demand. Numerical

results are presented. - )
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Introduction

A stochastic linear program 1is a linear program whose
parameters (coefficients, right hand sides) are uncertain. The
uncertain parameters are assumed to be known only by their
distributions. That means that the values of some functions are
numerical characteristics of random phenomena, e.g. mathematical
expectations of functions dependent on decision variables and

random parameters (Kall. et. al. 1988).

Suppose a function z = E C(V) 1is an expectation cf a
function C(vé), 5 € . V 1is a random parameter which has
outcomes V9. 0 is the set of all possible random events. It can
be finite, infinite, discrete or continuous. In the continuocus
case the computation of the expected value requircs to sclve the

integral:
E C(V) =/c<v5)p(d5)

with P being the probability measure.

In a general case V would consist of <ceveral components,
e.g. V.= (Vy,....,Vy) with outcomes vé wh' - we also will denote
by lower case letters, e.g. v = (vl,.... =~ and p(V5) alias
p(v) would denote the corresponding density function. In this
case the above mentioned integral takes the form of a multiple

integral:

In the case of 1 being discrete and finite the expectation

can be computed b, . wmultipic ~um:




E C(V) = £...8 C(V)p(V)
V1 Vn

The main difficulties in stochastic linear programming deal
with the evaluation of the multiple integral or the multiple sum.
The numerical computation of the expectation requires a 1large
number of function evaluations and each function evaluation means
a linear program to be solved. Different approaches attack this
problem, e.g. Birge and Wallace (1988), Kall et. al. (1988),
Rockafellar and Wets (1989) and others. We follow the concept of
Dantzig et. al. (1989).

Two Stage Stochastic Linear Program

An important «class of models concerns dynamic linear
programs. Activities initiated at time t have coefficients at
time t and t+1. Deterministic dynamic linear programs appear as
staircase problems. The simplest staircase problem is that with
two stages: X denotes the first, Y the second stage decision
variables, A, b represent the coefficients and right hand sides
of the first stage constraints and D, d concern the second period
constraints together with B which couples the two periods. c, £

are the objective function coefficients.

In the deterministic case ¢, f, A, b, B, D ,d are known with
certainty to the planner. In the stochastic case, the parameters
of the second stage are not known to the planner at time t=1, but
will be known at time t=2. At time t=1 only the distribution of
these parameters are assumed to be known. The second stage
parameters can be seen as random variables which get certain
outcomes with certain probabilities. We denote a certain outcome
of these parameters with 6§ and the corresponding probability with

p(d), ¢ € 4 ,the set of possible outcomes.




4
min z = cX + E6(fY5)
s/t AX = b (1)
Béx + pyS = a¢
X, vé > 0, § €N

In (1) a two stage staircase problem is transformed into a
two stage stochastic linear program and the parameters da% and D¢
being random variables. Given the two stage stochastic 1linear
program one wants to make a decision X which is feasible for all

scenarios and has the minimum expected costs.

We consider the case of 1 being discrete and finite, e.g.
= (1,...,K), the parameter §é§ takes on K values. Then we can
formulate an equivalent deterministic problem to the stochastic
linear problem. This 1is tractable if K 1is small. For K=3 the

deterministic equivalent problem is given in (2).

min z = cX + plle+ psz2+ p3fY3

s/t AX = b (2)
Blx + py? = gl
B2X + DY? = a2
B3X + py3 = a3
x, v, v2, ¢3 > 0

Two stage stochastic linear programs were first studied in
Dantzig (1955) and then developed by many authors. The method
which we want to apply here is using Benders (1962)
decomposition. Van Slyke and Wets (1969) suggested to express the
impact of the second period by a scalar © and '"cuts", which are
necessary conditions to the problem and are expressed only in
terms of the £first ©period variables X and 6. Benders

decomposition splits the original problem intc a master problem

_




and a subproblem which decomposes into a series of independent
subproblems, one according to each § € fl. The master problem, the

sub problems and the cuts are represented in (3), (4) and (5).

The master problem:

min zy = cX + ©

s/t AX = b (3)
Glx + ao =gl, 1=1,...,L
X, © >0

The sub problems:

min 286 = péfY5 (4)
s/t
pénb: pyé = a® + BSx
y§ >0, 6§ e, e.g. 0 = {1,2,3)

where p5ﬂ5 is the optimal Qual solution of subproblem §.

The cuts:
g = 55 pbréaé = E(néa’) (5)
G = 55 p®r®B¢ = E(n®BS)

feasibility cut
1 ... optimality cut

R
[II]
o

Solving the master problem we obtain a solution X. Given X
we can solve K subproblems § € I to compute a cut. The cut is a
lower bound on the expected value of the second stage costs

represented as a function of X. Cuts are sequentially added to

-—_




the master problem and new values of X are obtained until the
optimality criterion is met. We distinquish between two types of
cuts, feasibility cuts and optimality cuts. The first refers to
infeasible subproblems for a given X and the latter to feasible

and optimum subproblems, given X.

If the expected values z, G, and g are computed exactly,
that is, by evaluating all scenarios 6§ € 2, we refer to it as the
universe case. As we WwWill see later the number of scenarios
easily gets out of hand and it is not always possible to solve
the universe case. Therefore methods are sought which guarantee a
satisfying solution without solving the universe case. Employing

Monte Carlo methods seems to be a promising approach.

Monte Carlo Sampling

Each iteration of Benders' decomposition requires the
computation of expected values ,e.g. the subproblem costs, the
coefficients and right hand sides of the cuts. For each outcome §
¢ 1 a linear program has to be sclved. The expected value of e.g.

the subproblem costs is denoted by

zg = Ec(v®) = E £Y® , § € a.

The number of elements of Q 1is determined by the
dimensionality of the stochastic vector V = (Vysee,Vp) .
Typically the dimension h of V is quite large. E.g. in expansion
planning problems of electric power systems a component of V
denotes the availability of a type of generators or a demand of
power 1in a node of a multi area supply network or the
availability of a type of transmission line connecting two nodes.
Consider several nodes and arcs and one demand and some options
of generators in each node. The number of scenariocs K in the
universe case gets quickly out of hand, even if the distribution

of each component of V is determined by just a small number Ki of




discrete points. Suppose e.g. h = 20 and k! = 5. Then the total
number of terms in the expected value calculations is K = 520 =
1012, which is not practically solvable by direct summation
(Glynn 1in Dantzig et al. (1989)). Monte Carlo methods are
recommended tc compute multiple integrals or multiple sums for h
large (Davis and Rabinowitz (1984)). See Hammersly and Handscomb

(1964) for a description of Monte Carlo sampling techniques.

Crude Monte Carlo

Suppose V5, § = 1,...,n are scenarios, sampled independently
from their Jjoint probability mass function, then cb = C(V5) are
independent random variates with expectation z. (The subscript S

is suppressed now as there is no danger of confusion.)

n
z = (1/n) £ c$ (6)
5

is an unbiased estimator of z and its variance

Thus the standard error is decreasing with sample size n by

n~0:3. The convergence rate of Z to z is independent of the

dimension h of the random vector V.




Importance Sampling

We rewrite

z = Iy c(v)p(v) = Iy c(vip(via(v)/a(v)

by introducing a probability mass function q(v). We can see

g as a probability mass function of a random vector W, therefore

2z = E C(W)p(W)/a(wW)

and we obtain a new estimator

c(w)p(wd)/q(wd)
=1

z = (1/n)

oM g

which has a variance of

var(z) = (1/n) £,(C(wW)p(w)/q(w) - 2)2 q(w)

Choosing q*(w) = C(w)p(W)/(Z, C(W)p(W)) would lead to var(z)
= 0, that means we could get a perfect estimate of the multiple
sum just by one single observation. However this is practically
useless, since to sample C.p/q we have to know g and to determine
q we need to know z = I, c(w)p(w), which we eventually want to
compute. Nevertheless this result helps to derive some heuristics
of how to choose g: It should be approximately proportional to
the product C(w)p(w) and have a form which can be integrated




theoretically. For the theory of importance sampling we refer to
Glynn and Iglehart (1988) and Dantzig and Glynn (1989a).

P.Glynn and M.Nakayama in Dantzig et. al. (1989) developed
an importance sampling scheme wusing an additive model to

approximate the cost fuaction E C(V):

h
C(v)y = % Cl(vl)'
i=1
Actually C(v) 1s achieved by a marginal cost model,

considering marginal costs in each dimension i of V.

h
C(v) = C(1) + = M;(V;) (7)
i=1
Ml(vl) = C(‘Tl,..,Ti_l,Vi,Ti+l,..,Td) - C(T)
T = (Tq,...,7Ty) can be any arbitrary chosen point out of the
set of values Vi i = 1,..,h. For example we choose r7; that

outcome of V; which leads to the respectively lowest costs. In
the context of expansion planning of power systems this means
selecting respectively lowest demands and highest availabilities

of generators and transmission lines.

Defining

M; = E M, (V;) (8)

and
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h
F(v) = ((C(v) - C(7))/ & Mi(Vvjy) (9)
1=1

we can express the expected value of the costs in the

following form, e.g. in the case of h = 3:

z = C(r) + M Z, F(V) py(VyI)M(V])/M))pP,(Vy)P3(V3y)

+
=i
s8]

Z, F(v) pl(Vl)(pz(vz)Mz(Vz)/Ez)p3(V3)
+ ﬁ3 Ly F(v) pl(Vl)pz(VZ)(p3(V3)M3(V3)/ﬁ3)

(10)

Ncte that this formulation consists of a constant term and h
expectations. Given a fixed sample size n we pariition n into n?,
i = 1,..h sub-samples , such that = n; = n and nj; 2 1, 1 =

l1,...,n and n; being approximately proportional to M;. The h

expectations ;re separately approximated by sampling using
marginal densities. The i-th expectation corresponds of course to
the i-th component of V. Generating sample points in the i-th
expectation we use the importance density (piMi/ﬁi) for sampling
the i-th component of V and the original densities for any other

components. Denoting

nj
kg = (1/ny) §=l F(vy) (11)

the estimate of the i-th sum, we obtain
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(12)

h
z = C(71) + Z Mi#i '
1

]
-

the expected value of the second stage costs C(V).

Let oiz be the sample variance of the i-th expectation,where

aiz = 0 if n; = 1. The variance of the mean is then given by

h
0,2 = ¢ M.20.2 / nj (13)
1

Using importance sampling one can achieve significant
variance reduction. The experiment of M. Nakayama in Dantzig et
al. (1989) claims a variance reduction of 1:20000 using
importance sampling versus crude Monte Carlo sampling: For a
given and optimal X the second stage costs of a multi area
expansion planning model with 192 universe scenarios were sampled
with a sample size of 10 using both methods and the results

compared.

The derivation above concerned the expected second stage
costs z. To derive a cut we use the same framework analogously.
Note that a cut is defined as an outer linearization of the
second stage costs represented as a function of X, the first
stage variable<. At X, the value of the cut 1s exactly the

expected secr~ stage costs z. Therefore we can employ directly
the cost apg' -..mation scheme and the importance distribution to
compute the par-. —-ers of a cut. We define
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h
Fé(v) = ((7B)(v) - (7B)(7))/ T M{(v{) (14)
1=1
h
FI(v) = ((md) (v) = (1d)(1))/ = M;(vy) (15)
1=1

and get e.g. in the case of h = 3

G = (mB) (1) + M

=
™M

v FEOV) (P (V)M (V) /Hy) Py (Vo) Py (Vy)

+

=
N
™M

v FC(V) Py (Vy) (Py(Vy)My (Vy) /My)ps(vy)

+ v FC(V) Py (V])P5(Vy) (P (V3)My(Vy) /Hy)

<]
w
™

(16)

g = (nd) (7) +

=
=
™

v FI(V) (P (V)M (V1) /M) Py (Vy) Py (Vy)

+

=l
N

™M

v FI(v) P1(vy) (Py (V) M, (Vz)/ﬁz)p3 (v3)

+
=l

W
™M

v FI(v) P1(VIPy(Vy) (P3(V3) M, (V3)/ﬁ3)

(17)

the coefficients and the right hand side of a cut. We
compute the expected values again by sampling using the same
sample points as at hand from the computation of z.

~

Using Monte Carlo sampling we obtain Z (aé), é, g, which are
approximations of the expected values z = E c(V), G = E (7B)(V),
g = E (nd) (V). The impact of using approximations instead of the
exact parameters on the Benders decomposition algorithm is

analyzed in the following section.
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Benders! Decomposition

In the following we will derive the main steps of Benders
decowpousition algorithm for two stage stochastic linear programs
considering the "universe" case, which gives the exact solution
of the equivalent deterministic problem ("certainty equivalent").
We will then analyze the impact of sampling of subproblems on
Benders decomposition. See Geoffrion (1970) for a derivation of

Benders decomposition algorithm.

Given the equivalent deterministic problem in (2) and
assuming that K = 3 describes the universe case, we rewrite the
problem applying projection onto the X variables and obtain (18).
We assume for simplicity that (2) 1is feasible and has a finite

optimum solution.

min z =
cX + Infplfyl+ p2fry2+ p3fy3) (18)
aX = b pyl = a! + plx
X >0 DY?2 = a2 + B2X
py3 = g3 + B3X
vyl, v2, v3 >0

The infimal value function 1in (18) corresponds to the

following primal linear problem (19):

min zp = pteyl + p?fy2 + pIry3 = S (£vé) (19)
plnlz pyl = al + Blx
p2n2: DY? = d2 + B%X
p3n3: pY3 = a3 + B3X
vl, v2, v3 > o0

and to the dual linear problem (20):
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max zp = (20)

plrl(at+slx) + p2r2(a%+B2x) + p3n3(a3+B3x)

71ip = £
72D = f

73D = £

T, ”2, 73 >0

The primal problem is parameterized in the right hand side
by X. The assumption (2) being finite implies that (19) is finite
for at least one value of X. Applying the Duality Theorem of
Linear Programming we state that (20) has to be feasible. The

feasibility conditions

7D - £ =0

indicate that the feasible region {WalﬂéD - f £ 0} 1is
independent of X and just repeated for each scenario § € Q.

The assumption (2) being feasible requires feasibility of
the primal problem (19) for at least one X. By the Duality
Theorem again (20) has to be finite. Let nj, j=1,...,p be the
extreme points and nj, j=p+1,...,p+tqd be representatives of the
extreme rays of the feasible region of (9). Problem (20) is

finite if and only if

ﬂj(d5 + B%X) <0, j =p+l,....,p+q (21)

§ € 1l

We append constraints (21) to problem (18) to ensure that
the problem is bounded.

— e
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We call

zp%* = Max p5wj5(d5+55X) = zp8 (n87%) (22)

the optimum second stage costs for given % in scenario 6.

7%* denotes the optimum dual variables for scenario § selected
from the set ﬂja, j=1,..,p. It is clear that
z ¥ =5  z.0* (23)
SeN

1* 2 3%

Let 77,1 *,n be the vector of optimum dual variables of

the second stage problem, given Q, we outer linearize the infimal
value function in (18). By the dual problem (19) we obtain:

zD* = plzl*(al+Blx) + p2m2*(a?+B%x) + p3r3*(a3+B3x)

(24)

and

A
zD(ﬂl*,wz*,n3*,X) 2 zD(nl*,ﬂZ*,w3*,X) (25)

formulates the main property of the outer 1linearization.
This property enables us to rewrite problem (18) by expressing
the infimal value function by the outer linearized dual problem.
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min z = c¢X + zD(X) (26)

AX = b

X 20
zD(X) =
Max plr.l(al+slx) + p2r.2(a2+B2x) + p3r:3(a3+B3x)
129<p, 3 3 )

Using © as the greatest 1lower bound the problem can be

represented in the following form:

min z = ¢X + © (27)
AX = b
X >0
e 2 plﬂjl(d1+81X) + pzwjz(d2+BZX) + p3nj3(d3+B3X)
j=1,....,p
§ & Co_
nj(d + B"X) < 0, J = p+tl,....,p+q

§ € QO

Relaxation is applied to solve problem (12).

To test a solution (X, 8) one solves problem (19) or problem
(20), actually by solving
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zsé* = min ZP6 = fy$ (28)
s/t w%: py® = a% + BSx
v$ > o, § € Q

or by solving
2g%* = max zp® = 7% (ad+Béx) (29)

76D = f

i 2 0, § € N

If primal infeasibility or dual unboundness is detected, a

feasibility cut

78(a® + Béx) < 0 (30)

is added to the master problem. If all primal problems are
feasible or all dual problems unbounded an optimality cut

e > péré(ad+sSx) (31)
§eN

is added to the master problem.

In the 1-th iteration

zl = z,1* = ox3* + ol* (32)

is defined to be a lower bound and
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z1 = min(z!"1, cxi* + zs*}, 20 = =< (33)

to be an upper bound to the solution of the problem. If

(2 -2}/ TOL,

NN
IA

where TOL is a given tolerance, the problem is said to be

solved with a sufficient accuracy.

Probabilistic Cuts

Employing Monte Carlo sampling techniques means not to
solve all problems 6§ € 2, but solving problems § € S, S being a
subset of 1. Instead of the exact expected values 2g, G, g we
compute the estimates 25, G, § by weighted sums. Suppose e.g. in
problem (2) S is the set of problems (1,2} out of 2 = (1,2,3}.
For example in the case of crude Monte Carlo sampling scenarios §
€ S are sampled according to the probability mass function p6 and
an approximation of the expected value 1is obtained by computing
the mean of the samples, e.g. 2zg = (z1 + zz)/z. Referring to (2),
a cut obtained by crude Monte Carlo sampling would be computed as

e 2 (pl/(pY+p?)) (al+Blx) + (p2/(pl+p?)) (a%+B2X).

Suppose 6 1is the approximation of 6, the exact outer
linearization of the second stage costs. The difference © - 8
describes the error of the approximation. Comparing the primal

(19) and the dual (20) problem for N and S we see

e - é(p1 + p2) = zp3*
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The error (6 - 68) = zp3* - p38 is constant with respect to X

1 of a cut. See

and affects therefore just the right hand side g
also Dantzig and Glynn (1989b) in this respect. In general S is a
sufficient large subset of 1, 8 is computed by sampling methods
and the error is derived from the variance of the sample mean and

assumed to be small.

Cuts computed by samples do not necessarily meet the
condition cf outer linearization (25). Violating this condition a
cut intersects and separates parts of the feasible region of the
second stage problem. A sampled cut is therefore not a valid
cut. The right hand sides of cuts obtained by sampling can be

seen as stochastic parameters. We assume normal distributions

defined by the means Ql and the standard deviations oél. We know
that Og = 05, the standard deviation of the second stage costs.

Upper and Lower Bounds

For random right hand sides gl in Benders' master also the
upper and locwer bounds of the problem are probabilistic. The
1, : 1 _ 4
7~ 1s given by o3~ = 0,47

standard deviation of the upper bound, o 5
the standard deviation of the subproblems costs.

To determine the standard deviation of the 1lower bound

consider the master problem at iteration L:

min zy = cX + 0 (34)
s/t 70: ax = b
rl: clx + 10 = gt (0,1)
nl clx + e = gL (ozL)
X, © 2 0,
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where L cuts have been added to the originally relaxed
master problem. The right hand sides are independent stochastic
parameters, assumed normally distributed. We assume independence

as the cuts are denerated from independent samples, neglecting

the dependency that Xy, 1 =1,..,L are weakly connected by the
Benders' algorithm. Under these assumptions we experimentally
obtain a distribution of ZM* by drawing N samples j = 1,..,N from
the normal distributions of gl. Varying the right hand sides
(gl,..,gL)j . according to the samples j = 1,..,N and solving
the master problem for each j = 1,..,N we obtain solutions ZM*j'
j = 1,..,N, which determine the distribution of the lower bound.

Assuming normal distribution, we compute the variance

02,y = var(zy”) = (1/N-1) (zM*j - zy") 2 (35)

.Mz

=1

Solving the master problem N times to obtain an estimate of

the lower bound variance is very expensive. We assume that the
standard deviations ozl, 1=1,..,L are small and all solutions
zM*j, j = 1,..,N have the same basis. Then we can compute the

sample points from the dual objective function:

nhigly - oh (36)

It
=M

=1

N
02,4 = (1/N-1) T (A 2 (37)
3
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or directly:

L
OZZM = ? nlz o L2 (38)

Stopping Rule

The accuracy of the solution is influenced by the accuracy

of the cuts determined by the variances 0251 and is a function of
the sample size n. Given a fixed sample size n, the Benders

algorithm

has to proceed until the maximum accuracy 1is achieved.
Operating with probabilistic bounds the maximum accuracy is
reached if the upper and 1lower bounds are identical in
distribution. See Dantzig and Glynn (1989b) for an appropriate
rule to determine this property. At least no improvement is
possible anymore if the upper and the lower bound intersect.

Employing this rule we thus define

(39)

Ny
t
N

IA

(@]

as the stopping criteria.

The Accuracy of the Solution

The accuracy of the solution can be estimated from the
distribution of the lower bound of the problem after the last
iteration. Given zy and o,y, in the last iteration, we compute a

confidence interval e.gq.
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_ M
2095 T 209.95 97

25.95 being the 95% quantile of the standard normal

distribution.

If

*
Z.g95/2y < TOL, (40)

the obtained solution is satisfying. The quality criterion
TOL is understood here as a confidence interval. Otherwise the
sample size has to be increased and the problem has to be solved

again with the increased sample size.

Improvement of the Solution

Suppose the solution with a certain sample size was not
satisfying. 1Instead of starting from the beginning with an
increased sample size we want to use the information, which we
have already collected. To do this, we look for the binding cuts
in the final solution, increase the sample size and recompute the
binding cuts at the same ﬁl, they were originally computed. The
enlarged sample size leads to smaller variances 0221 of the
binding cuts and eventually to a smaller confidence interval of
the final solution. Solving the master problem again with the
improved binding cuts will in general not result in an
intersection of the lower and upper bound. Therefore some more
iterations are necessary to obtain the optimal solution according
to the increased sample size. This improvement procedure is
employed iteratively until a satisfying solution is obtained. We

can state now the algorithm as follows:




r----------IIIIIIIllIIIIIIIIIIIIII----------r—~
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The Algorithm

Step ¢ 1Initialize
i =0, 20 = o

Step 1 Solve the relixed ister problem and obtain a
lower bond:

Step 2 1=1 + 1
Solve subproblems and obtain an
upper bound: Z; = min(Z; + zg *y,
compute and add a cut to %he master problen,
using Monte Carlo (importance) sampling.

Step 3 Solve the master pr blem_and obtain a
lower bond: = cX + 8

Step 4 If (Z - z £ 0) go to step 2

Step 5 Compute confidence interval z_.45 and obtain a
solution: z, X, ©

Step 6 If (zogg/2Zy < TOL) stop, otherwise go to step 7

Step 7 Increase samgle size and
initialize 27 = %

Step 8 Recompute binding cuts
Upper bound: zl = mln{zl -1+ CXy + zS ),

Step 9 Go to step 3
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Numerical Results

The method has been implemented in an APL environment and

tested on small problems:

The test problem consists of a capacity expansion planning
problem of electric utilities. There are two types of generators
with different 1investment and operations costs, which can be
built and operated in a way to meet the demand, given by a load
duration curve of three load levels: base, medium and peak load.
Both the availability of power from the generators and the loads
of the three 1load 1levels are considered to be uncertain. Wwe
assume a discrete distribution of four outcomes of the first,
five outcomes of the second generator and four outcomes of each
of the demand. The model is formulated as a complete recourse
nodel, that means we ensure feasibility of the subproblems for
any X. "Unserved demand" can be purchased with costs, higher than
the costs of production (penalty costs). The generators have
intersecting costs functions so that building of both generators
1s reasonable. The building of the gznerators is in competition

with the purchase of load.

The assumptions on the stochastic variables imply 1280
possible outcomes, 1.e. 1280 subproblems have to be solved in
each iteration of the Benders decomposition in the universe case.
We compare the universe solution (the test problem 1is small
enough to solve the universe problem) with solutions gained by

the importance sempling algorithm.

Table 1 shows the results in the case of 20 samples out of
the possible 1280 combinations and without an improvement phase.
100 replications of the same experiment were run to get
statistical information about the accuracy of the solution and

the estimate of the accuracy of the solution.

The mean of the objective function value (total costs)
differs from the universe solution by 0.2%. From the distribution
of the optimum objective function wvalue given by the 100

replications a 95% confidence interval can be conmputed: plus
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minus 1.5%. A 95% confidence interval of each solution of the 100
replications 1s estimated. The mean of all confidence intervals
1s 1.4%, which is a slight underestimation of the true confidence
interval.This error 1is caused by the estimation method. The
estimation method however improves in accuracy with decreasing
confidence intervals of the solution. The coverage rate of 92%
expresses that in 92% of the 100 replications the correct answer
of the universe solution is covered by the estimated confidence
interval. This again shows that we are slightly underestimating:
if the computation the 95% confidence interval was exact, we

would expect 1 coverage rate of 95%.

The Dbias and the confidence interval of the optimunm
strategies (the loads X to be installed) are larger than those of
the optimum objective function value. The optimum seems to be
flat: several different strategies 1lead close to the optimum

costs. Confidence intervals of 52% and 48% are computed.

In the above example a sample size of 20 samples was chosen.
Additional computational effort is also needed to obtain the
importance distribution, e.g. 17 subproblems have to be solved in
each iteration to obtain the marginal ccsts M;. Compared to the
universe solution the method e.g. achieves with 2.9% of
computational effort a solution which 1is with 95% confidence

within an interval of plus minus 1.5% of the correct answer.

Table 2 represents computational results for an enlarged
model: We consider a triangular network of tree nodes connected
by transmission lines. There is a load in each node and one type
of generator in two of the nodes. The generators in the two nodes
and the transmission lines have to be built to serve the demand.
The generators and the transmission lines respectively differ in
investment and operation costs. We consider two time periods (in
the sense of "Here and Now" decision making, and independent in
the uncertain parameters), dependent in the deterministic part of
the problem. Thus there are 10 decision variables in the first
stage (master) problem. The distributions of the wuncertain

parameters are identical to the first test problem. The problem

—
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is solved with 20 and 40 samples out of 1280 universe scenarios
using importance sampling and the results are compared. The
statistical information is obtained by respectively 30

replications of the same experiment.

One can see decreasing bias, decreasing confidence intervals
and improving estimations of the confidence intervals with
increased sample size. A larger number of binding cuts (e.q.
depending on the number of first stage variables and thus the
problem size) in the final solution implies more error. Therefore
a higher sample size is required to obtain the same accuracy of

the solution, compared to smaller problems.

Table 1: 20 samples

mean 95%conf Dbias
correct

#iter 7.9

Gl 1800.0 1568.8 52.0 -12.8
G2 1571.4 1793.9 47.7 14.2
theta 13513.7 13922.8 15.9 3.0
obj 24642.3 24682.7 1.5 0.2
est. conf 1.4

coverage 0.92
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Table 2o 20 samples
mean 95%conf bias
% %
correct
fiter 17 13.8
period 1 G1 2559 1656 116.0 -35.3
G2 5082 5577 26.7 9.7
T1 1369 1860 65.9 35.8
T2 1119 1331 140.2 19.0
T3 0 72 435.2
thetal 13336 16072 29.4 20.5
period2 G1 1889 2352 149.6 24.5
G2 7624 7759 43.3 1.8
T1 2787 2307 77.9 ~-17.2
T2 1801 1721 71.0 -4.4
T3 0 212 386.5
theta2 28058 26712 29.0 -4.8
obj 99325 101199 3.7 1.9
est. conf 2.4
coverage 0.6
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Table 2b: 40 samples
mean 95%conf bias
% %
correct

titer 17 14.7
period 1 Gl 2559 1189 58.0 -53.
G2 5082 5810 17.3 15.
T1 1369 1744 55.6 27.
T2 1119 1290 49.1 15.

T3 0 213 310.2
thetal 13336 17123 10.7 28.
period2 Gl 1889 1445 102.5 =23
G2 7624 8670 17.8 13.
T1 2787 3102 44 .7 11
T2 1801 1758 50.8 -2
T3 0 226 395.0

theta?2 28058 27196 16.8 -3.
obj 99325 100347 2.3 1.

est. conf 2.1

coverage 0.7
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